Pros and Cons of Commonly Used Nanoparticle Dispersion Methods

1. Stirring
 - Affordable.
 - Tends to alter the nanoparticle structure.
 - There is likely to be an increase in temperature if the dispersion is sonicated for a long time.
 - Bath format is less effective than the probe format.
 - Unpredictable performance at the lower end of the market.

2. Homogenizing
 - Highly efficient.
 - Probe tip disintegration can contaminate samples.
 - Nanoparticle structure can be altered.
 - The temperature of the dispersion will increase even just for a few minutes.
 - Unpredictable performance at the lower end of the market.

3. Sonication
 - Uniform dispersion.
 - Will not change nanoparticle structure.
 - Cooling feature helps control the temperature of the dispersion.
 - Consistent and repeatable results. Can be used as an additional step to all other dispersion methods.
 - Does not work well with dispersions containing volatile solvents.

4. 3 Roll Milling
 - Affordable.
 - Rarely causes attrition or breaking of nanoparticles.
 - Inefficient.
 - Rarely disperses the particles evenly and has trouble with deglomeration.
 - Cannot prevent particles from aggregating or agglomerating.

High Pressure Homogenizer
- Highly efficient.
- Tends to alter the nanoparticle structure.
- Can cause increase in temperature of the dispersion.
- Expensive.

Low Shear

High Shear

Medium Shear

Magnetic Stirrer

Three Roll Mill

High Pressure Homogenizer

Infographics brought to you by Torrey Hills Technologies

Mixing Equipment Expert
www.threerollmill.com